Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A potential anticancer agent: 5-chloro-7-iodo-8-hydroxyquinolinium dichlorido(5-chloro- 7 -iodoquinolin-8-olato- $\kappa^{2} N, O$)palladium(II) dihydrate

Peter Vranec* and Ivan Potočňák

Department of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia
Correspondence e-mail: peter.vranec@student.upjs.sk

Received 28 September 2011; accepted 4 October 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA ; \mathrm{H}-$ atom completeness 93%; disorder in solvent or counterion; R factor $=0.032$; $w R$ factor $=0.080$; data-to-parameter ratio $=16.2$.

The title $\mathrm{Pd}^{\mathrm{II}}$ coordination compound, $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClINO}\right)$ $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{ClINO}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was prepared as a potential anticancer agent. Its structure is ionic and consists of a square-planar $\left[\mathrm{PdCl}_{2}(\mathrm{CQ})\right]^{-}$complex anion (CQ is 5 -chloro-7-iodoquinolin-8-olate), with the $\mathrm{Pd}^{\mathrm{II}}$ atom surrounded by two chloride ligands in a cis configuration and one N, O-bidentate CQ molecule, a protonated anion of CQ as counter-cation and two non-coordinated water molecules. The water molecules are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which interconnect the HCQ^{+}cations into a chain parallel to [010]. Apart from these interactions, the structure is also stabilized by face-to-face $\pi-\pi$ interactions [centroid-centroid $=3.546$ (3) \AA] , which occur between the phenolic parts of the complex anions and cations.

Related literature

For background to square-planar complexes of platinum and palladium as potential chemotherapeutics, see: Bielawska et al. (2010); Bruijnincx \& Sadler (2008); Ding et al. (2005); Garoufis et al. (2009). For structures of CQ complexes, see: Di Vaira et al. (2004) for $\left[\mathrm{Cu}(\mathrm{CQ})_{2}\right]$ and $\left[\mathrm{Zn}(\mathrm{CQ})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{THF}$; Miyashita et al. (2005) for $\left[\mathrm{ReCl}_{2}(\mathrm{CQ}) \mathrm{O}\left(\mathrm{PPh}_{3}\right)\right]$. The structure of $\left[\mathrm{Pd}(8-\mathrm{HQ})_{2}\right](8-\mathrm{HQ}=8$-hydroxyquinoline) was previously described by Prout \& Wheeler (1966). For other related structures, see: Cui et al. (2009); Guney et al. (2011); Screnci \& McKeage (1999); Yue et al. (2008); Kapteijn et al. (1996); Fazeli et al. (2009); Gniewek et al. (2006). Structures of complexes containing other halogen-derivatives of 8-HQ may also be found in the Cambridge Structural Database, see: Allen (2002). For $\pi-\pi$ interactions, see: Janiak (2000).

Experimental

Crystal data

$\underset{\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{CIINO}\right)\left[\mathrm{PdCl}_{2}-\right.}{\left.\left(\mathrm{C}_{4} \mathrm{CIINO}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}}$

$$
\begin{aligned}
& \beta=104.455(3)^{\circ} \\
& V=47.13 .7(2) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=3.89 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.44 \times 0.14 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=824.31$
Monoclinic, C2/c
$a=34.3212(10) \AA$
$b=7.7028$ (2) A
$c=18.4128(5) \AA$

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.555, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	H atoms treated by a mixture of
independent and constrained	
$w R\left(F^{2}\right)=0.080$	refinement
$S=1.14$	$\Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3}$
4641 reflections	$\Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Pd1-N1	$2.009(4)$	$\mathrm{Pd} 1-\mathrm{O} 1$	$2.035(3)$
		$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.2711(14)$
		$\mathrm{Pd} 1-\mathrm{Cl} 2$	$2.3107(14)$
N1-Pd1-O1	$82.12(15)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$175.90(12)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$94.01(12)$	$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$94.44(10)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$175.98(10)$	$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$89.47(6)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.82	2.18	$2.782(7)$	131
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 4 A$	$0.82(6)$	$1.92(6)$	$2.737(10)$	$174(6)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 4 B$	$0.82(6)$	$1.96(6)$	$2.683(9)$	$146(6)$
$\mathrm{O} 4 A-\mathrm{H} 1 O 4 \cdots \mathrm{O} 2$	0.85	2.00	$2.787(10)$	155
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.48	$3.347(8)$	155
Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$				
l				

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CALC-OH (Nardelli, 1999); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

metal-organic compounds

This work was supported by a grant from the Slovak Grant Agency (VEGA No. 1/0079/08) and by the VVGS (PF 27/ 2011/CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2030).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Bielawska, A., Poplawska, B., Surazyñski, A., Czarnomysy, R. \& Bielawsky, K. (2010). Eur. J. Pharmacol. 643, 34-41.

Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
Bruijnincx, P. C. A. \& Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197-206.
Cui, J., Zhang, M., Wang, Y. \& Li, Z. (2009). Inorg. Chem. Commun. 12, 839841.

Ding, W. Q., Liu, B., Vaught, J. L., Yamauchi, H. \& Lind, S. E. (2005). Cancer Res. 65, 3389-3395.

Di Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. \& Zatta, P. (2004). Inorg. Chem. 43, 3795-3797.

Fazaeli, Y., Najafi, E., Amini, M. M. \& Ng, S. W. (2009). Acta Cryst. E65, m270. Garoufis, A., Hadjikakou, S. K. \& Hadjilijadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397
Gniewek, A., Ziółkowski, J. J. \& Lis, T. (2006). Acta Cryst. E62, m1428-m1430. Guney, E., Yilmaz, V. T. \& Buyukgungor, O. (2011). Polyhedron, 30, 19681974.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Kapteijn, G. M., Grove, D. M., Kooijman, H., Smeets, W. J. J., Spek, A. L. \& van Koten, G. (1996). Inorg. Chem. 35, 526-533
Miyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. \& Okamoto, K. (2005). Sci. Tech. Adv. Mater. 6, 660-666.

Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Oxford Diffraction (2007). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.
Prout, C. K. \& Wheeler, A. G. (1966). J. Chem. Soc. A, pp. 1286-1290.
Screnci, D. \& McKeage, M. J. (1999). J. Inorg. Biochem. 77, 105-110.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yue, Ch., Jiang, F., Xu, Y., Yuan, D., Chen, L., Yan, Ch. \& Hong, M. (2008). Cryst. Growth Des. 8, 2721-2728.

supplementary materials

Acta Cryst. (2011). E67, m1508-m1509 [doi:10.1107/S1600536811040803]

A potential anticancer agent: 5-chloro-7-iodo-8-hydroxyquinolinium dichlorido(5-chloro-7-iod-oquinolin-8-olato- $\kappa^{2} N, O$) palladium(II) dihydrate

P. Vranec and I. Potocnák

Comment

Square-planar complexes of platinum and palladium, as potential chemotherapeutics, are studied worldwide (Bruijnincx \& Sadler, 2008 and Bielawska et al., 2010). Unfortunately, many of these anticancer drugs exhibit significant side effects and their activity is relatively low (Screnci \& McKeage, 1999). One of the approaches to overcome limitations connected with platinum- or palladium-based chemotherapy, new square-planar coordination compounds of these metals with biologically active ligands should be prepared. One of the examples of such ligand is 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ), as it exhibits wide range of biological activity, including anticancer activity. CQ's favourable effect to human cancer cells is ascribed to its ability to chelate metal ions (Ding et al., 2005). In our efforts to prepare novel square-planar complexes of Pt and Pd with clioquinol of $\mathrm{Cat}\left[\mathrm{MCl}_{2}(\mathrm{CQ})\right]\left(M=\mathrm{Pt}\right.$ or Pd ; $\mathrm{Cat}=$ cation of +1 charge, such as $\mathrm{Na}^{+}, \mathrm{K}^{+}$or $\left.\mathrm{Cs}^{+}\right)$composition, we prepared crystals of $\mathrm{HCQ}\left[\mathrm{PdCl}_{2}(\mathrm{CQ})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})(\mathrm{HCQ}=$ protonated molecule of CQ$)$, which we believe has an increased anticancer activity. Here we present the structure of the title compound.

The molecular structure of the ionic $\mathrm{HCQ}\left[\mathrm{PdCl}_{2}(\mathrm{CQ})\right] .2 \mathrm{H}_{2} \mathrm{O}$ (I) compound consists of discrete $\left[\mathrm{PdCl}_{2}(\mathrm{CQ})\right]^{-}$anion in which the central $\mathrm{Pd}^{\mathrm{II}}$ atom has a distorted square-planar configuration, protonated molecule of $\mathrm{CQ}\left(\mathrm{HCQ}^{+}\right)$as cation, and two non-coordinated water molecules (Fig. 1). Complex anion is formed by $\mathrm{Pd}^{\mathrm{II}}$ atom which is surrounded by two chlorido ligands in cis- configuration at $2.271(1)(\mathrm{Pd} 1-\mathrm{Cl} 1)$ and $2.311(1) \AA(\mathrm{Pd} 1-\mathrm{Cl} 2)$ distances, which are close to $\mathrm{Pd}-\mathrm{Cl}$ distances observed in other square planar $\mathrm{Pd}^{\mathrm{II}}$ complexes (Cui et al., 2009), and one bidentately coordinated CQ molecule. This is bound to $\mathrm{Pd}^{\mathrm{II}}$ atom by nitrogen atom of pyridine part and oxygen atom, which is ready to coordinate after deprotonation of the CQ's hydroxyl group in phenolic part; the Pd1—N1 (2.009 (4) \AA) and Pd1—O1 (2.035 (3) \AA) distances are normal (Yue et al., 2008). Both the coordinated and free protonated CQ molecules are nearly planar, with the largest deviation of atoms from the mean planes through the aromatic rings being 0.05 (1) \AA. The geometric parameters within the individual rings resemble those found in similar compounds containing pyridine and phenolic rings (Guney et al., 2011 and Kapteijn et al., 1996). The $\mathrm{C}-X$ bonds ($X=\mathrm{Cl}$ and I; 1.742 (10) and 2.098 (2) \AA in average, respectively) are usual for single $\mathrm{C}_{\mathrm{sp} 2}-X$ bonds (Fazeli et al., 2009 and Gniewek et al., 2006).

Besides the ionic forces, the structure is also stabilized by $\pi-\pi$ interactions and hydrogen bonds. $\pi-\pi$ interactions occur between the phenolic parts of the complex anion and the cation. The distance between centroids of these parts $\left(C g_{\text {An }}-C g_{\text {Cat }}\right.$ $=3.546(3) \AA)$ and angle between normal to the plane and vector connecting the two centroids $\left(16.46^{\circ}\right)$ are consistent with the values typical for the face-to-face $\pi-\pi$ interactions (Janiak, 2000). Moreover, the distance between Pd1 atom and $C g_{C a t}{ }^{\text {i }}$ of another adjacent cation $(\mathrm{i}=x, 1+y, z)$ of $3.497 \AA$ and the angle between normal to the plane of HCQ^{+}cation and vector connecting $C g_{\text {Cat }}{ }^{\text {i }}$ and Pd1 of 171.96° indicate possible η^{6} semi coordination of the phenyl ring of the cation. Thus the coordination number of Pd atom can be considered as $4+1$ with a tetragonal pyramidal coordination polyhedron. Due to these intermolecular contacts the cations and anions are linked to form a chain parallel with [010] (Fig. 2).

supplementary materials

Two uncoordinated water molecules interconnect the HCQ^{+}cations via hydrogen bonds into a chain running along [010] (Fig. 3). Distances and angles characterizing these bonds are summarized in Table 2.

Experimental

Ethanolic solution of PdCl_{2} prepared from $0.2 \mathrm{~cm}^{3} 40 \%$ water solution of PdCl_{2} in $8 \mathrm{~cm}^{3}$ of ethanol $\left(0.048 \mathrm{~g} \mathrm{PdCl}_{2} ; 0.27\right.$ $\mathrm{mmol})$ was cooled down to $-15^{\circ} \mathrm{C}$ and mixed with a cold $\left(-5^{\circ} \mathrm{C}\right)$ THF solution of $\mathrm{CQ}\left(0.17 \mathrm{~g} \mathrm{CQ}\right.$ dissolved in $15 \mathrm{~cm}^{3}$ of THF; 0.54 mmol$)$. Resulting solution was stirred at $-15^{\circ} \mathrm{C}$ for a while and then a cold $\left(3^{\circ} \mathrm{C}\right)$ aqueous solution of $\mathrm{CsCl}(0.046$ g of CsCl dissolved in $2 \mathrm{~cm}^{3}$ of water; 0.27 mmol) was added. Yellow precipitation of I , which formed immediately after mixing, was filtered off, dried on air and analyzed by IR and elemental analysis. Mother liquor was left for crystallization in refrigerator at $-5^{\circ} \mathrm{C}$ and after few days we obtained a small amount of orange-red crystals of I. Crystals were filtered off, dried on air and analyzed by IR spectroscopy to prove their identity with the precipitation.

Refinement

H atoms of the CQ moieties were inserted in calculated positions appropriate for the data collection temperature with isotropic displacement parameters riding on that of the parent C and O atoms, $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})$. The hydrogen atom coordinated on the N 2 atom in HCQ^{+}was found in the difference electron map and refined freely, water H atoms were found with the program $C A L C-\mathrm{OH}$ (Nardelli, 1999) and were refined with fixed bond distances and angles. Hydrogen atoms could be found only for one disordered position (O4A).

Figures

Fig. 1. The structure of I. Displacement ellipsoids are drawn at the 50% probability for nonH atoms. H atoms are represented as small spheres of arbitrary radii. Only one position of the disordered O 4 water molecule is shown.

Fig. 2. Parallel stacking of the cation and the complex anion enabling $\pi-\pi$ interactions in I (shown by dashed lines); $\mathrm{i}=x, 1+y, z$. Possible penta-coordination of $\mathrm{Pd}^{\mathrm{II}}$ is suggested.

Fig. 3. The system of hydrogen bonds (dashed lines) in I formed in the direction of b axis. Complex anions are not shown because of clarity.

5-chloro-7-iodo-8-hydroxyquinolinium dichlorido(5-chloro-7-iodoquinolin-8-olato- ${ }^{2}{ }^{2}, O$)palladium(II) dihydrate

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClINO}\right)\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{ClINO}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$F(000)=3104$
$M_{r}=824.31$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=34.3212(10) \AA$
$b=7.7028$ (2) \AA
$c=18.4128(5) \AA$
$\beta=104.455(3)^{\circ}$
$V=4713.7(2) \AA^{3}$
$Z=8$
$D_{\mathrm{x}}=2.323 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 14809 reflections
$\theta=3.0-29.6^{\circ}$
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, orange-red
$0.44 \times 0.14 \times 0.07 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 8.3438 pixels mm^{-1}

ω scans

Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.555, T_{\text {max }}=1.000$
4641 independent reflections
3888 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-42 \rightarrow 42$
$k=-9 \rightarrow 9$
$l=-22 \rightarrow 22$
24287 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.14$

4641 reflections
287 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0265 P)^{2}+28.2625 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.87$ e \AA^{-3}

Special details

Experimental. CrysAlis RED, Oxford Diffraction (2007), Analytical numeric absorption correction using a multifaceted crystal model.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

| | x | y | z | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |\quad Occ. (<1)

sup-4

C16	$0.51643(16)$	$0.8190(8)$	$0.5717(3)$	$0.0418(13)$	
H6	0.4953	0.7889	0.5311	0.050^{*}	
C15	$0.55647(15)$	$0.7739(7)$	$0.5712(3)$	$0.0328(11)$	
C27	$0.66770(19)$	$0.5433(8)$	$0.8681(3)$	$0.0451(14)$	
H27	0.6713	0.5941	0.9151	0.054^{*}	
C26	$0.62989(17)$	$0.5169(7)$	$0.8236(3)$	$0.0388(13)$	
H26	0.6077	0.5519	0.8403	0.047^{*}	
C17	$0.50877(17)$	$0.9044(9)$	$0.6298(3)$	$0.0538(16)$	
H7	0.4825	0.9349	0.6292	0.065^{*}	0.50
O4A	$0.7649(2)$	$0.3424(13)$	$0.7353(5)$	$0.0556(18)$	0.50
H1O4	0.7444	0.3321	0.6986	0.083^{*}	0.50
H2O4	0.7819	0.2658	0.7303	0.083^{*}	0.50
O4B	$0.7706(2)$	$0.4711(14)$	$0.7626(5)$	$0.0556(18)$	
O3	$0.72251(16)$	$0.1567(7)$	$0.5263(3)$	$0.0780(16)$	
H2O3	0.7047	0.0789	0.5129	0.117^{*}	
H1O3	0.7125	0.2474	0.5028	0.117^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0356(2)$	$0.0526(2)$	$0.0522(2)$	$0.00153(17)$	$0.01937(17)$	$-0.00573(18)$
Pd1	$0.0312(2)$	$0.0324(2)$	$0.02578(18)$	$-0.00258(17)$	$0.00749(15)$	$0.00048(16)$
C11	$0.0538(9)$	$0.0550(9)$	$0.0381(7)$	$0.0005(7)$	$0.0218(7)$	$-0.0047(6)$
C12	$0.0436(8)$	$0.0610(9)$	$0.0350(7)$	$-0.0094(7)$	$-0.0002(6)$	$-0.0030(7)$
I2	$0.0445(2)$	$0.0382(2)$	$0.03188(18)$	$-0.00183(16)$	$0.00673(15)$	$0.00035(15)$
C13	$0.0471(9)$	$0.0655(10)$	$0.0352(7)$	$-0.0147(7)$	$-0.0020(6)$	$-0.0088(7)$
C14	$0.0315(7)$	$0.0886(12)$	$0.0561(9)$	$0.0108(8)$	$0.0184(7)$	$0.0014(9)$
O1	$0.0263(18)$	$0.045(2)$	$0.0298(18)$	$-0.0024(16)$	$0.0042(15)$	$-0.0069(16)$
O2	$0.036(2)$	$0.066(3)$	$0.041(2)$	$0.012(2)$	$0.0132(18)$	$0.006(2)$
N1	$0.028(2)$	$0.039(2)$	$0.032(2)$	$-0.0007(19)$	$0.0082(18)$	$0.0029(19)$
C13	$0.045(3)$	$0.033(3)$	$0.026(2)$	$-0.003(2)$	$0.010(2)$	$0.001(2)$
N2	$0.028(2)$	$0.044(3)$	$0.036(2)$	$-0.004(2)$	$-0.0001(19)$	$0.008(2)$
C12	$0.028(3)$	$0.027(3)$	$0.034(2)$	$0.002(2)$	$0.011(2)$	$0.001(2)$
C14	$0.039(3)$	$0.034(3)$	$0.026(2)$	$-0.006(2)$	$0.000(2)$	$0.001(2)$
C11	$0.028(3)$	$0.028(3)$	$0.025(2)$	$-0.001(2)$	$0.003(2)$	$0.006(2)$
C28	$0.043(3)$	$0.044(3)$	$0.040(3)$	$-0.012(3)$	$-0.011(3)$	$0.006(3)$
C29	$0.027(3)$	$0.033(3)$	$0.031(3)$	$-0.006(2)$	$0.001(2)$	$0.007(2)$
C19	$0.028(3)$	$0.028(3)$	$0.028(2)$	$-0.003(2)$	$0.008(2)$	$-0.001(2)$
C25	$0.035(3)$	$0.029(3)$	$0.030(2)$	$-0.002(2)$	$0.008(2)$	$0.007(2)$
C23	$0.026(3)$	$0.036(3)$	$0.034(3)$	$-0.003(2)$	$0.003(2)$	$0.002(2)$
C18	$0.033(3)$	$0.058(4)$	$0.044(3)$	$0.004(3)$	$0.015(3)$	$-0.006(3)$
C22	$0.034(3)$	$0.030(3)$	$0.026(2)$	$-0.002(2)$	$0.005(2)$	$0.002(2)$
C24	$0.024(2)$	$0.040(3)$	$0.039(3)$	$-0.002(2)$	$0.013(2)$	$0.007(2)$
C21	$0.028(3)$	$0.035(3)$	$0.030(2)$	$-0.001(2)$	$0.010(2)$	$0.005(2)$
C16	$0.028(3)$	$0.054(4)$	$0.039(3)$	$-0.003(3)$	$0.000(2)$	$0.001(3)$
C15	$0.030(3)$	$0.036(3)$	$0.031(3)$	$-0.003(2)$	$0.005(2)$	$0.007(2)$
C27	$0.059(4)$	$0.045(3)$	$0.028(3)$	$0.000(3)$	$0.005(3)$	$-0.004(2)$
C26	$0.044(3)$	$0.042(3)$	$0.032(3)$	$0.000(3)$	$0.013(2)$	$0.005(2)$

C17	$0.027(3)$	$0.079(5)$	$0.054(4)$	$0.001(3)$	$0.008(3)$	$-0.004(3)$
O4A	$0.030(3)$	$0.082(6)$	$0.055(4)$	$0.009(4)$	$0.010(3)$	$0.010(4)$
O4B	$0.030(3)$	$0.082(6)$	$0.055(4)$	$0.009(4)$	$0.010(3)$	$0.010(4)$
O3	$0.083(4)$	$0.075(4)$	$0.063(3)$	$-0.007(3)$	$-0.007(3)$	$-0.007(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

I1-C12	2.096 (5)
Pd1-N1	2.009 (4)
Pd1-O1	2.035 (3)
Pd1-Cl1	2.2711 (14)
$\mathrm{Pd} 1-\mathrm{Cl} 2$	2.3107 (14)
I2-C22	2.099 (5)
C13-C14	1.749 (5)
C14-C24	1.735 (5)
O1-C11	1.316 (6)
O2-C21	1.347 (6)
O2-H2	0.8200
N1-C18	1.327 (7)
N1-C19	1.373 (6)
C13-C14	1.358 (8)
C13-C12	1.405 (7)
C13-H3	0.9300
N2-C28	1.319 (7)
N2-C29	1.360 (6)
N2-H2N	0.82 (6)
C12-C11	1.385 (7)
C14-C15	1.409 (7)
C11-C19	1.440 (7)
C28-C27	1.384 (9)
N1—Pd1-O1	82.12 (15)
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	94.01 (12)
O1-Pd1-Cl1	175.98 (10)
N1—Pd1-Cl2	175.90 (12)
O1-Pd1-Cl2	94.44 (10)
$\mathrm{Cl1}-\mathrm{Pd} 1-\mathrm{Cl} 2$	89.47 (6)
C11-O1-Pd1	111.8 (3)
C21-O2-H2	109.5
C18-N1-C19	119.4 (4)
C18-N1-Pd1	128.3 (4)
C19-N1-Pd1	112.3 (3)
C14-C13-C12	120.6 (5)
C14-C13-H3	119.7
C12-C13-H3	119.7
C28-N2-C29	123.7 (5)
C28-N2-H2N	118 (4)
C29-N2-H2N	118 (4)
C11-C12-C13	122.1 (5)
C11-C12-I1	119.3 (4)

C28-H28	0.9300
C29-C21	1.420 (7)
C29-C25	1.423 (7)
C19-C15	1.416 (7)
C25-C26	1.409 (7)
C25-C24	1.410 (7)
C23-C24	1.354 (7)
C23-C22	1.408 (7)
C23-H23	0.9300
C18-C17	1.407 (8)
C18-H8	0.9300
C22-C21	1.369 (7)
C16-C17	1.338 (8)
C16-C15	1.419 (7)
C16-H6	0.9300
C27-C26	1.366 (8)
C27-H27	0.9300
C26-H26	0.9300
C17-H7	0.9300
O4A-H1O4	0.8502
$\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 2 \mathrm{O} 4$	0.8499
$\mathrm{O} 3-\mathrm{H} 2 \mathrm{O} 3$	0.8488
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3$	0.8483
C26-C25-C24	125.5 (5)
C26-C25-C29	117.7 (5)
C24-C25-C29	116.7 (5)
C24-C23-C22	120.6 (5)
C24-C23-H23	119.7
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	119.7
N1-C18-C17	121.5 (5)
N1-C18-H8	119.2
C17-C18-H8	119.2
C21-C22-C23	121.1 (5)
C21-C22-I2	121.1 (4)
C23-C22-I2	117.8 (4)
C23-C24-C25	121.6 (5)
C23-C24-C14	119.5 (4)
C25-C24-C14	118.8 (4)
O2- $\mathrm{C} 21-\mathrm{C} 22$	124.6 (5)
O2- $\mathrm{C} 21-\mathrm{C} 29$	117.4 (4)
C22-C21-C29	118.0 (5)
C17-C16-C15	120.6 (5)

sup-6

supplementary materials

$\mathrm{C} 13-\mathrm{C} 12-\mathrm{I} 1$	$118.6(4)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$121.8(5)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13$	$119.1(4)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{Cl} 3$	$119.0(4)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$125.6(4)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 19$	$118.6(4)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 19$	$115.7(4)$
$\mathrm{N} 2-\mathrm{C} 28-\mathrm{C} 27$	$120.3(5)$
$\mathrm{N} 2-\mathrm{C} 28-\mathrm{H} 28$	119.9
$\mathrm{C} 27-\mathrm{C} 28-\mathrm{H} 28$	119.9
$\mathrm{~N} 2-\mathrm{C} 29-\mathrm{C} 21$	$120.2(5)$
$\mathrm{N} 2-\mathrm{C} 29-\mathrm{C} 25$	$117.9(5)$
$\mathrm{C} 21-\mathrm{C} 29-\mathrm{C} 25$	$121.8(4)$
$\mathrm{N} 1-\mathrm{C} 19-\mathrm{C} 15$	$121.7(4)$
$\mathrm{N} 1-\mathrm{C} 19-\mathrm{C} 11$	$115.2(4)$
$\mathrm{C} 15-\mathrm{C} 19-\mathrm{C} 11$	$123.1(4)$

$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 6$	119.7
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 6$	119.7
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 19$	$116.5(5)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$126.9(5)$
$\mathrm{C} 19-\mathrm{C} 15-\mathrm{C} 16$	$116.6(5)$
$\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 28$	$119.3(5)$
$\mathrm{C} 26-\mathrm{C} 27-\mathrm{H} 27$	120.4
C28-C27-H27	120.4
C27-C26-C25	$120.9(5)$
C27-C26-H26	119.6
C25-C26-H26	119.6
C16-C17-C18	$120.2(5)$
C16-C17-H7	119.9
C18-C17-H7	119.9
H1O4-O4A-H2O4	107.7
H2O3-O3-H1O3	105.2

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 3$	0.82	2.18	$2.782(7)$	131.
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 4 \mathrm{~A}$	$0.82(6)$	$1.92(6)$	$2.737(10)$	$174(6)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 4 \mathrm{~B}$	$0.82(6)$	$1.96(6)$	$2.683(9)$	$146(6)$
$\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 2$	0.85	2.00	$2.787(10)$	155.
$\mathrm{C} 28 — \mathrm{H} 28 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.93	2.48	$3.347(8)$	155.

Fig. 1

Fig. 2

Fig. 3

